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Until now no methods have been found to solve the Navier-Stokes equations in their 
general form, as is necessary not only for investigations of such particular cases as flows 
with mean values of the Reynolds number but also to obtain general regularities in the theory 
of viscous flows. 

No constraints, in principle, exist on the possibility of an iterative extension of 
solutions obtained for creeping flows to a higher Reynolds number range. However, up to now 
this possibility has not been realized although such an attempt has been made for all kinds 
of creeping flows for which solutions have been obtained. The reason for such a lack of 
success is not so much the complexity and tedium of calculating the successive approximations 
as the fact that the majority of solutions obtained for creeping flows are not equally suit- 
able for all flow domains. 

Indeed, a comparative estimate on the basis of the Stokes solution with totally dis- 
carded inertial terms for the Navier-Stokes equations shows that the inertial terms are Re r 
times greater than the viscous, which means that the Stokes linearization is competent and 
the Stokes solution is true only for the domain when Rer < i, i.e., for flows near the sphere 
surface [I]. For flows far from the surface (r § ~) the product Rer can become arbitrarily 
large despite any smallness of Re, in this domain the inertial terms are greater than the 
viscous and, therefore, the Navier-Stokes equations linearized by totally discarding the 
terms are inapplicable for description of flows far from a sphere. The fact of satisfaction 
of the boundary conditions at infinity in the Stokes solution is caused by favorable singular- 
ities inherent to the problem of the flow around a sphere. This is confirmed by the fact 
that it is already not possible to obtain the Stokes solution satisfying the boundary condi- 
tions at infinity for a cylinder as it turns out to be impossible to obtain the second and 
successive approximations for the problem of the flow around a sphere, the Whitehead paradox 
[21.  

Oseen improved the Stokes linearization by partial conservation of the inertial terms. 
He obtained a solution that had no explicit constraints on Re, however, it is true only far 
from the sphere and does not satisfy the boundary conditions on the surface without the addi- 
tional condition Re + 0, whereupon the velocity distribution in a potential flow was used 
to linearize the Navier-Stokes equations. 

Proudman and Pearson [3] tried to obtain an equally suitable solution by merging the 
Stokes and Oseen solutions in the intermediate domain. Many successors appeared for this 
method but finding a solution true for higher than Re ~ 5 was not successful. The reason 
here is obvious: the analytic expressions obtained in the Stokes and Oseen approximations 
are each true in their domain and are not correct in the merger domain and the mathematical 
method governing the legitimacy of the penetration of each of the solutions into the merger 
domain and eliminating the error that occurs here did not exist. 

An attempt is made in this paper to develop a method to obtain equally suitable solu- 
tions of the complete Navier-Stokes equations for small Re values in the example of viscous 
fluid flow around a sphere. 

The complete Navier-Stokes equations are written for the stream function in the vari- 
ables r, U = cos 0 (the longitudinal coordinate ~ is measured from the rear point) in the 
form 

D D ,  = R e .  r' ol~ Or -{- r 2 Or 011 -F " ~  " ~  -t- r 2 I 1,2 0 ~ .  ( 1 ) 

1 -- ~2 o 2 Re = D =  02 + r~ - 
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the boundary conditions are 

, ( | ,  - l - . . < t~ .~<  l )  = ~(~'-~<~<~) �9 (2) 
Or 

D , - ~  O, , - +  t r" (1 - -  V~) for r--~ oo; (3) 

the axisymmetry condition is 

,=D,=0 for ~=+i. (4) 

We linearize (I) by means of the scheme 

( i  ~,  a t al', a 2 a,, 2 ~ 0%], 
D O , = R e  r2 o~ Or + r ~ Or at, + - ~ ' ~ "  + r~ i - - F  2~7 0 4 .  (5 )  

We use the known Stokes solution for a sphere as the linearizing function ~i 

*~ = T 2r~ - -  3r + (t - -  ~ ) ,  ( 6 )  

S u b s t i t u t i n g  (6 )  i n t o  ( 5 ) ,  we o b t a i n  t h e  e q u a t i o n  

[( 3 t  1 t h  O(Dr 3 t I t )  X (1 -- #")-~--- + . -~-~ l )  .D~?,] DD~ = Re 
t - - T T §  - +  ; 4 7 r - - 4  7 7 - - - i  

(7)  

which corresponds well to physical representations on the flow pattern around a sphere. Thus 
for r + ~ (7) is converted into the known linearized Oseen equation which is true for any Re 
far from a sphere 

., [o ( ~ )  ~ o (D~) (t -- ~2)] D D ~ = n e [ T ~  + r o~ " " ( 8 ) 

and for small Re values is converted near the sphere surface into the Stokes approximation 

DD, = 0. (9) 

Although (7) is also linear, the complexity of its convective part does not permit seeking 
the exact solution. To obtain the approximate solution we first find the solution of the 
homogeneous part of (7), i.e., the solution of (9), which we seek in the form 

D ,  = R(r)O(@. (10)  

We have 

(i - ~) 0~0 r~ 02R + = O. (II) 
R Or ~ 0 O~ z 

The solution of (ii) is written in the following manner 

[Pn(O) and Qn(u) are Legendre polynomials of the first and second kinds]. There results 

from the boundary condition (3) that B n = 0, while M n = 0 results from (4) since --~--(~ -- 
I) ~ ~ as ~ + _+i. In sum, (12) is converted into the equation 

~ I), (13) 
dPn Ot) , 

Or2 r~ O~ ~ , ,= x 

whose solution is not difficult and the expression for the stream function is written as 

~ = 2 (2,~- ~) Anr'-'~ + B,~ 7 + --  ~ )  ~-~ " (14) 

Formula (14) is a solution of the Navier-Stokes equation (i) in the Stokes approximation 
and yields the known Stokes solution for the sphere (6) for the boundary conditions (2) and 
(3). The form of the expression (14) indicates the mode of obtaining an approximate solu- 
tion of (7) in all. 

Let us assume that (7) has successfully been converted so that the derivatives of the 
vorticity with respect to the longitudinal coordinate have vanished in its right side. Then 
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the converted initial part of (7) in each iteration step could be arranged in the form ~fn(r) 
n=1 

(l--~s)~, analogous to (14) and a solution of (7) could therefore be obtained from 

the solution of several ordinary differential equations. 

To realize the conversion mentioned we write 

D~ = ~(r, ~) exp [T(r, ~)]. (15) 

Then (7)  i s  c o n v e r t e d  t o  

D ~ =  Re t 2 r T ~  ~ - - 2 W F  ~Fr + Re - - T 7 - -  

4 , ( 1  - -  ~t 2) - -  2 (1 r 2#2) al~aT ..~_+a(p Re I 2 r t t aT 
(16) 

+ Re . r 4 r e 4 r ~ --  Ix ) ~"  + Re 'r~ r~ p~ Or e 

- -  k ' ~  ] r e a~ ~ r e \ O~ l ] 

From the requirement that the partial derivatives of the vorticity with respect to the 
longitudinal coordinatevanish,the necessity that the brackets in the second component of the 
convective part of (16) vanish follows. This permits determination of the function T(r, H) 

2 t - ~ 2  dT = R e ( t  3 t t t ) (1__~2) ;  (17)  
r e dlx ' r  4 r 2 4- '~" 

T(r, ~) = - ~  r--  ~ V ~ (~ +C). (18) 

Taking  i n t o  a c c o u n t  t h a t  H v a r i e s  be tween +1 and - 1 ,  and s t a r t i n g  from t h e  boundary  c o n d i -  
t i o n  ( 3 ) f o r  t h e  v o r t i c i t y ,  i t  i s  e a s y  t o  f i n d  t h a t  C = - 1 ,  t h e n  

R e (  3 i 1 )  
T(r, tx)=--  ~- r - -  4 %'- '7 (~--I). (19)  

Substituting (19) into (16) and neglecting terms with factors Re n for n > I in the smallness 
condition for Re, we obtain an equation to determine the vorticity 

i t 3 1 D~=[Re(I+-~-7)--4Re 1 "]~162 - I - { + B e  l('rz 74)~_TRel ~ ] ~ ,  (20)  

which i s  s o l v e d  a p p r o x i m a t e l y  by an i t e r a t i o n  method.  

We have  t h e  f i r s t  a p p r o x i m a t i o n  f o r  Re ~ 0: 

~ ( ~ dPn (~) (~1= M nrn+ * -t- Ka -~ ) ( l -- lx ) - - ~ - - - .  (21)  
n ~ l  x 

Since the solution (6) exists that is true near a sphere for Re + 0, the boundary condition 
on the surface for the vorticity in (21) is determined from it while the boundary condition 
at infinity is determined from (3) and (15) (also as Re ~ 0). In sum, the boundary condi- 
tions are written in the form 

qh ---- (3/2)(1 - - /x  ~) for r = t; (22)  

~ 1 - ~ 0  for r - ~ o o  (23)  

and on t h e  b a s i s  o f  t h e  s o l u t i o n  (21)  

3 t 
~, _-- -~--7- (I --~). (24) 

An equation to determine the vorticity in a second approximation follows from (24) and (20): 

Since the solution of the homogeneous equation is (12) and the factors (i - ~2) and ~(I - ~2) 
are the function (i - ~2)dPn(~)/dH for n = 1 and 2, it is easy to find the general solution 
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of (25) in a second approximation, which yields when (15) is taken into account 

1 ( i - - ~ 2 )  I +  Re I X D~ = C,~r n+l + Dn 7 dt~ --  T "~ (26) Ln=l 
' '  ] X (1-- ~') -- ~--- Re ( '~-+-6--~) ~ ( ' .  -- 1~2)exp(r-- 43--- T~')'2"i t~Re (~_ ,). 

This method possesses sufficiently rapid convergence, as can be illustrated by comparing 
the exact Oseen solution for the vorticity with that obtained by the method proposed. The 
Oseen formula for the stream function is 

t ( 2 r , + + ) ( l _ F ~ ) +  3 1 [1 exp -- %b== T -~- i-~e (i + . )  -- -~r(tt l)], (27) 

and for the vorticity is 

3 1 3 Re) (i -- ~) exp ~--~-~ r(~--l). (28) O~= ( ~  "T" +~ 

Solving the Navier-Stokes equation for the vorticity in the Oseen approximation (8) by 
the method proposed, we obtain, analogously to (15) and (19), that the solution of (8) must 
be sought in the form 

He 
D~ = ~ (r, ~) exp -~- r (~ -- I). (29) 

Substituting (29) into (8) we have 

acp 
Dq) = Re--bT-, (30) 

3 1 
Solving (30) under the boundary conditions (22) and (23), we find ~I ---- -~ -T (I -- ~ 2) 

and ~2 = -~--;-+ Re (i _~2) in a second approximation. The vorticity is expressed in the 

second approximation by the formula D~=/3--!+ 3 )(I-- exp~r \2 r -~-Re ~2) (~--I), which agrees com- 

pletely with the exact Oseen solution (28). The third and successive approximations are the 

(++ +) same as the second D~z---D~;3=D~2n = + Re (i- ~2)exp r(~ I), i.e., the proposed ap- 

proximate method yields a solution in the second approximation that already converges to the 
exact value and does not change in subsequent iterations. 

Returning to (26), we determine that its approximate solution can be found by first 

converting it by means of the relationship ~-----F(r, ~)exp r---~---~-7 (~- i), We have 

( 1 t )  aF (1 31  1 1) D F = - - R e  l + T - - ~  ( ~ - i )  --Re - . - ~ r  7 4r" 47 X 

2, OF 3 I R e ( + - -  3 1~ (  i 
X (l - -  ~ ) - -~  + ~- Re-~- (~ - -  l ) F  + i-d" ~ /  - -  ~2) _ (31)  

i ~ dPn (F) --Re(-~---;-q--~6-~z)lx(l--lxz)+ - ( Cnrn+' + Dn -~ ) ( t -- lx 2) -~  . 

in a first 

The first approximation for the stream function, obtained in solving (31) when Re + 0 is 
writ ten as 

~; = Mnr n+l + Nn 7" ~ + Anr n+3 + Bnr n+* + C.r27 n + D. 7 X 
n~---1 

4 T 7  - ~ ) T "  

From the boundary conditions of (3) at infinity, we find the constants of integration by 
remarking that they are independent of Re, as well as from the condition that the flow be- 

comes potential far from the sphere by taking into account that exp r 4 4 r~ (~--I)= 
i for B = I. 
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TABLE 1 

Re 

0,t 
t,0 
5,0 
0,t 
t,0 
5,0 

t0,0 

t , t  
t,05 
t,02 
50 
20 
i0 
t0 

r ~ ) 
Stokes 
solution 

(6) 

5,454.t0 -a 
t,384.i0-a 
5,606.t0-~ 

909,4 
i38,8 
3i,89 
31,89 

Solution 
(33) 

5,53i. t0 -3 
1,658.10 -a 
1,881.10 =~ 

924,2 
149,7 
37,52 
37,52 

8 ~ 

Oseen 
solution 

( 2 7 )  ,,,, ~o- 

1,235 
'I,.11i 
0,89i 

953,6 
152,2 0 
37,96 r 
37,52 

/ 
�9 / 

i / 

I 
I 
I .  
I ,  
I 

/ 

F i g .  1 

In a first approximation 

We find the second approximation by substituting (32) into the first part of (31) and solving 
the equation obtained under homogeneous boundary conditions, Summing the second approximation 
with (32) by the method of [4], we obtain the total expression for the stream function in the 
r, 0 variables 

I +)sin~O_ 3 , = (+r, + 5 0(r' +) 

16 2 2 rs COS0 sin s0exp  r 4 4 ~. (Cos@-- t). 

The t h i r d  and s u c c e e d i n g  a p p r o x i m a t i o n s  do n o t  d i f f e r  f rom (33)  when t e r m s  w i t h  j u s t  Re 1 
a r e  r e t a i n e d ,  i . e . ,  e v e n  t h e  s o l u t i o n  f o r  t h e  s t r e a m  f u n c t i o n  i s  r a p i d l y  c o n v e r g e n t .  A n a l y s i s  
o f  (33)  shows t h a t  i t  i s  e q u a l l y  s u i t a b l e  f o r  t h e  who le  f l o w  domain .  

Nea r  t h e  s u r f a c e  ( r  + 1) (33 )  i s  c o n v e r t e d  i n t o  t h e  S t o k e s  f o r m u l a  ( 6 ) ,  wh ich  h a s  no 
c o n s t r a i n t s  i n  Re when t h e  c o n d i t i o n  Re r < 1 i s  s a t i s f i e d ,  and w h i c h ,  a s  i s  known, i s  g o v e r n -  
i ng  and  t h e  l i m i t  o f  a p p l i c a b i l i t y  o f  t h e  S t o k e s  s o l u t i o n .  F a r  f r o m  t h e  s u r f a c e  t h e  c o m p u t a -  
t i o n s  using (33) are in good agreement with the Oseen results (27). The results illustrating 
the equal-suitability of the solution (33) for the whole flow domain are represented in Table 
I. 

The location of the point of flow separation is determined from the known condition 
8V0/~r = 0 (r = i), resulting in the expression 

cos e = (8 + 9 Re - -  2 ]/ '9 Re - -  56)/9 Re~ (34 )  

whose graphical display (solid curve) and comparison with numerical [5] (dashes) and experi- 
mental [6] data (points) are represented in Fig. i. 

An equation governing the appearance of a vortex behind the sphere 4 = /9 Re9 - 56 is 
written from (34) for 8 = 0, wherefrom it is seen that a vortex first appears in the flow 
field for Re = 8, which is in good agreement with Re = 8.5 [5]. 

Shown in Fig. 2a and b are streamlines around the sphere for Re ffi U~d/~ ffi 5 and 20, 
respectively (the solid lines are the results of [5] and the dashes are a computation using 
( 3 3 ) ) ,  

Satisfactory agreement holds till at least Re ffi 20, where the results are closest in 
the rear and frontal domains and most divergent in the equatorial domain. 

Figure 3 shows the location of the stationary vortex behind the sphere for Re = U~d/~ = 
37.7 and 26.8 (lines l and2), superposed for comparison and experimental points from the 
photographs [6]. It is seen that (33) describes the flow in the separation domain satis- 
factorily to Re = U| ~ 30-40. 

It is interesting to analyze the dependence of the extent of the stationary vortex on 
Re. The location of the downstream end of the vortex is determined for 8 = 0. Here 

8 8 2  



a 

Fig.  2 

exp r 4 4 

~O- 

Fig. 3 Fig. 6 

'> r~ (~--{)'= { and (33) is converted into the expression $ ~ (r-- J)~(1 _~tz) 

that vanishes not only on the sphere surface and along the axis of sym- 

metry but also when the square bracket equals zero, which yields 

= ~ - ( 2 r  2 + r). R e  (35) 

The expression obtained permits determination of the extent of the vortexfor different Re 
values. The solution (35) is tompared in Fig. 4 with experimental data [6] (open circles) 
and with n~erical results [5] (dark points). Good agreement is conserved to Re = U~d]9 ~ 
100-120 which is close to the limit value at which a steady flow still holds, 

It follows from Fig. 1 that defines the location of the stream points, from Fig. 2 and 
Table i, where numerical values of the stream function are compared directly, that the solu- 
tion (33) is applicable down to Re ~ 25-30. Approximately the same deduction is suggested 
from an analysis of the stationary vortex location behind the sphere (Fi B. 3). And although 
an analysis of the extent of the vortex zone (Fi B . 4) defines the domain of applicability 
to Re ~ 10Q-120, still no doubt is raised that the domain of applicability of the solution 
(33) does not exceed Re ~ Z0-Z5, where it must be taken into account that the solution ob- 
tained has no constraints on Ee for the description of flows far from the sphere, as is con- 
firmed by the results in Table i. 

In conclusion, let us make a brief analysis of the solution (33) in order to determine 
the possibility of its further improvement and extension of the range of its applitabiiity. 
The second component in (33) together with the exponential factor�9 determines the whole 
viscous perturbation that the body around which the viscous fluid flows introduces into the 
free stream, the so-called "Stokeslet" of this solution. The influence of this viscous com- 
ponent on the solution is evidently determined mainly by the exponential fattor. The vis- 
cous term in (35) vanishes and the transition to a nonvortical flow occurs when the exponen- 
tial factor tends to zero and since the exponent is always negative, this will occur if the 

Re (r_.~3 -~-i i )(s @ -- i) will be sufficiently large, for which product in the exponent -~- -- -~ 

it is necessary that as Re + 0, r ~ ~, and therefore, a perturbation is propagated a large 
distance from the streamlined body in a creeping flow, i.e., the well-known fact in the theo- 
ry of viscous flows is confirmed mathematically. 
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For Re } 1 the flow rapidly goes over into the potential everywhere except the domain 

n e a r  t h e  s u r f a c e  s i n c e  a s  r + 1 one  o f  t h e  f a c t o r s  i n  t h e  e x p o n e n t  r - -  T 4 r2 t e n d s  t o  

zero. Consequently, no matter how large the value of Re there is always a neighborhood near 

R, ( ~ I i )(cos0 1) will be small, and the whole vis- the surface where the exponent T r-- 4 4 r z 

cous permutation is concentrated in this domain, as corresponds to the physical model of the 
flow in boundary layer theory. 

On the basis of an analysis, the deduction can be made that the method considered per- 
mits, in principle, approximate solutions to be obtained for the complete Navier-Stokes 
equations for a sufficiently large flow range by extending the equally suitable solution ob- 
tained to the domain of larger Re by successive approximations. 
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STEADY-STATE FLOW OF A RIVULET ALONG A SURFACE UNDER THE INFLUENCE 

OF ACCELERATION 

A. F. Tal'drik and O. P. Chernyaev UDC 532.65:532.543 

Consideration is given to dependence of a solution for steady-state flow of a rivulet 
of viscous incompressible liquid on a hard flat wall on the following independent primary 
parameters: density p (kg/ma), kinematic viscosity 9 (m2/sec), and surface tension c (kg/sec 2) 
for the liquid, contact wetting angle ~ at the boundary of the three media, width of the 
main rivulet H (m) [or flow rate in the rivulet Q (ma/sec)], field acceleration a (m/sec 2) 
directed along the wall. The following assumptions were made: only velocity component v 
(m/sec) directed along a equals zero. 

A cross section of the rivulet is a region r bounded by a section with length H from 
the direction of the wall and the arc of a circle at the free surface of the rivulet. The 
arc of the circle and section intersect at an angle equal to =. External pressure P0 is con- 
stant, and tangential stresses at the free surface from the direction of the external medium 
are ignored [I, 2]. 

In region r we find the distribution of velocities v, in particular the maximum velocity, 
flow rate QI, momentum fluxes I, and kinetic energy G in relation to the arguments enumerated 
above. Balance equations for the momentum and continuity for the incompressible Newtonian 
liquid have the form 

( v . v ) v  = - - V p / p + v A v  + a, V.V = O, v = ~/p. ( 1 )  

W i t h  t h e  a s s u m p t i o n s  made a b o v e  i n  a c o o r d i n a t e  s y s t e m  w h e r e  a x i s  OZ i s  d i r e c t e d  a l o n g  a ,  
(I) is brought into the form--v,p/pq-~Av-}-a = 0, since (v.v)v = 0 in view of the assumption 
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